Search results

1 – 10 of 112
Article
Publication date: 1 January 1993

Tom Huang, Chuck Zhang, Sam Lee and Hsu‐Pin (Ben) Wang

The performance of a welding process determines not only the cost, but also the quality of the product. How to control the welding process in order to ensure good welding…

Abstract

The performance of a welding process determines not only the cost, but also the quality of the product. How to control the welding process in order to ensure good welding performance with less cost and higher Productivity has become critical. The objective of this study is twofold: (1) developing artificial neural networks to predict welding performance using different learning algorithms: back propagation, simulated annealing and tabu search; (2) comparing and discussing the performance of neural networks trained using those algorithms. Statistical analysis shows that back propagation is able to make more accurate prediction than the other algorithms for this particular application. However, all three algorithms demonstrate impressive flexibility and robustness.

Details

Kybernetes, vol. 22 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 31 May 2019

Abdullahi Babatunde Saka and Daniel W.M. Chan

This paper aims to review the status of development of building information modelling (BIM), its trends and themes across the six continents of the world.

Abstract

Purpose

This paper aims to review the status of development of building information modelling (BIM), its trends and themes across the six continents of the world.

Design/methodology/approach

A total of 914 journal articles sought from the search engine of Web of Science (WOS) based on the country/region option of the WOS to group them into continents. A best-fit approach was then applied in selecting the suitable software programmes for the scientometric analysis and comparisons and deductions were made.

Findings

The findings revealed that there are differences in the development of BIM across the six continents of the world. South America and Africa are lagging in the BIM research and Australia and Asia are growing, whilst Europe and North America are ahead. In addition, there exist differences in the research themes and trends in these continents as against the single view presented in extant studies.

Originality/value

This study introduced a new approach to carry out a comparative and taxonomic review and has provided both academic researchers and industrial practitioners with a clear status of development of BIM research and the trend across the six continents of the world.

Details

Construction Innovation, vol. 19 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 18 August 2021

Gowtham Venkatraman, Adam Hehr, Leon M. Headings and Marcelo J. Dapino

Ultrasonic additive manufacturing (UAM) is a solid-state joining technology used for three-dimensional printing of metal foilstock. The electrical power input to the ultrasonic…

Abstract

Purpose

Ultrasonic additive manufacturing (UAM) is a solid-state joining technology used for three-dimensional printing of metal foilstock. The electrical power input to the ultrasonic welder is a key driver of part quality in UAM, but under the same process parameters, it can vary widely for different build geometries and material combinations because of mechanical compliance in the system. This study aims to model the relationship between UAM weld power and system compliance considering the workpiece (geometry and materials) and the fixture on which the build is fabricated.

Design/methodology/approach

Linear elastic finite element modeling and experimental modal analysis are used to characterize the system’s mechanical compliance, and linear system dynamics theory is used to understand the relationship between weld power and compliance. In-situ measurements of the weld power are presented for various build stiffnesses to compare model predictions with experiments.

Findings

Weld power in UAM is found to be largely determined by the mechanical compliance of the build and insensitive to foil material strength.

Originality/value

This is the first research paper to develop a predictive model relating UAM weld power and the mechanical compliance of the build over a range of foil combinations. This model is used to develop a tool to determine the process settings required to achieve a consistent weld power in builds with different stiffnesses.

Article
Publication date: 31 January 2024

Zhenkun Li, Zhili Zhao, Jinliang Liu and Xin Ding

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction…

Abstract

Purpose

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction plunge micro-welding (FPMW) technology without mold assistance, to overcome the problems of low interfacial bonding strength, shrinkage cavities and flash defects caused by the low hold-tight force of solder on the copper column.

Design/methodology/approach

A pressurizing device installed under the drill chuck of the friction welding machine is designed, which is used to apply a static constraint to the solder ball obliquely downward to increase the hold-tight force of the peripheral solder on the copper column during welding and promote the friction metallurgical connection between them.

Findings

The results show that the application of static constraint during welding can increase the compactness of the solder near the friction interface and effectively inhibit occurrences of flash, shrinkage cavities and crystal defects such as vacancies. Therefore, compared with the unconstrained (UC) FPMW, the average strength of the statically constrained (SC) FPMW joints and aged SC-FPMW joints can be increased by 51.1% and 122.6%, and the problem of the excessive growth of the interfacial connection layer in the UC-FPMW joints during aging can be effectively avoided.

Originality/value

The application of static constraint effectively inhibits the occurrence of defects such as shrinkage cavities, vacancies and flash in FPMW joints, and the welding quality is significantly improved.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 29 January 2024

Chang Chen, Yuandong Liang, Jiten Sun, Chen Lin and Yehao Wen

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Abstract

Purpose

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Design/methodology/approach

Based on the motion principle of the three-jaw chuck and the pneumatic “fast pneumatic network” (FPN), a variable distance pneumatic holder embedded with a flexible sensor is designed. A structural design plan and preparation process of a soft driver is proposed, using carbon nanotubes as filler in a polyurethane (PU) sponge. A flexible bending sensor based on carbon nanotube materials was produced. A static model of the soft driver cavity was established, and a bending simulation was performed. Based on the designed variable distance soft pneumatic gripper, a real-time monitoring and control system was developed. Combined with the developed pneumatic control system, gripping experiments on objects of different shapes and easily deformable and fragile objects were conducted.

Findings

In this paper, a variable-distance pneumatic gripper embedded with a flexible sensor was designed, and a control system for real-time monitoring and multi-terminal input was developed. Combined with the developed pneumatic control system, a measure was carried out to measure the relationship between the bending angle, output force and air pressure of the soft driver. Flexible bending sensor performance test. The gripper diameter and gripping weight were tested, and the maximum gripping diameter was determined to be 182 mm, the maximum gripping weight was approximately 900 g and the average measurement error of the bending sensor was 5.91%. Objects of different shapes and easily deformable and fragile objects were tested.

Originality/value

Based on the motion principle of the three-jaw chuck and the pneumatic FPN, a variable distance pneumatic gripper with embedded flexible sensors is proposed by using the method of layered and step-by-step preparation. The authors studied the gripper structure design, simulation analysis, prototype preparation, control system construction and experimental testing. The results show that the designed flexible pneumatic gripper with variable distance can grasp common objects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 September 2023

Zhili Zhao, Mingqiang Zhang, Xi Meng, Zhenkun Li, Jiazhe Li, Luying Qiu and Zeyu Ren

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds…

Abstract

Purpose

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds assisted positioning. The purpose of this paper is to study the flow behavior of the solder undergoing frictional thermo-mechanical action during the FPMW and to determine the source of the solders in the micro-zones with different microstructure characteristics near the solder/Cu column friction interface.

Design/methodology/approach

Three kinds of Sn58Bi/SAC305 and SAC305/Pb90Sn composite solder samples were designed to study the flow behavior of the solder during FPMW using Bi and Pb as tracer elements.

Findings

The results show that most of the solders in the position occupied by the copper column was softened and plasticized during the welding process and was extruded to side of the copper column, flowing axially, circumferentially and radially along a trajectory similar to a conical spiral line. Under the drive of the tangential friction force and the radial hold-tight force, the extruded out visco-plastic solders fully mixed with the visco-plastic solders on the sides of the copper column, and bonded with the solders that deformed plastically on the periphery, so that a stir zone and a dynamic recrystallization zone finally evolved. The outside plastically deformed solders evolved into a thermo-mechanical affected zone.

Originality/value

The flow behavior of the solder during the FPMW was determined, as well as the source of the solders in micro-zones with different microstructure characteristics.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 10 March 2022

Yangyang Dong, Tongle Zhang, Shaojie Han, Yipan Guo, Bo Zeng, Yongbin Wang and Zijian Zhang

Spherical robot plays an essential role in the field of mobile robot because of its unique shape and omni-directional mobility, especially in the application of planet detection…

Abstract

Purpose

Spherical robot plays an essential role in the field of mobile robot because of its unique shape and omni-directional mobility, especially in the application of planet detection. Although spherical robot has many advantages over leg robot, its obstacle climbing performance is still not satisfactory, that is exactly the motivation of this paper. The purpose of this paper is to propose a high-performance hopping mechanism for spherical robot, which can adapt to different terrain and effectively cross obstacles.

Design/methodology/approach

The hopping system uses torque spring as part of the energy storage mechanism, and converts the kinetic energy of rotation into elastic potential energy with a particularly designed turntable. Moreover, the track of the turntable, based on the Archimedes spiral principle, has the attributes of equidistance and equivelocity that enable better stability of energy storage process.

Findings

Experiments show that the proposed hopping mechanism can make a 250 g spherical robot jump up to 58 cm with the take-off angle of 60°. Finally, the influence of friction and take-off angle on the hopping height and distance of the robot is also analyzed, which provides a prior guidance for optimizing its jumping process.

Originality/value

This paper shows how to easily design a lightweight, compact and embedded spring hopping structure so that a spherical hopping robot with detection ability can be developed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 August 2023

Dongmin Li, Shiming Zhu, Shangfei Xia, Peisi Zhong, Jiaqi Fang and Peng Dai

During drilling in coal mines, sticking of drill rod (referred to as SDR in this work) is a potential threat to underground safety. However, no practical measures to deter SDR…

Abstract

Purpose

During drilling in coal mines, sticking of drill rod (referred to as SDR in this work) is a potential threat to underground safety. However, no practical measures to deter SDR have been developed yet. The purpose of this study is to develop an anti-SDR strategy using proportional-integral-derivative (PID) and compliance control (PIDC). The proposed strategy is compatible with the drilling process currently used in underground coal mines using drill rigs. Therefore, this study aims to contribute to the PIDC strategy for solving SDR.

Design/methodology/approach

A hydraulic circuit to reduce SDR was built based on a load-independent flow distribution system, a PID controller was designed to control the inlet hydraulic pressure of the rotation motor and a typical compliance control approach was adopted to control the feed force and displacement. Moreover, the weight and optimal combination of the alternative admittance control parameters for the feed cylinder were obtained by adopting the orthogonal experiment approach. Furthermore, a fuzzy admittance control approach was proposed to control the feed displacement. Experiments were conducted to test the effectiveness of the proposed method.

Findings

The experimental results indicated that the PIDC strategy was appropriate and effective for controlling the rotation motor and feed cylinder; thus, the proposed method significantly reduces the SDR during drilling operations in underground coal mines.

Research limitations/implications

As the PIDC strategy solves the SDR problem in underground coal mines, it greatly improves the safety of coal mine operation and decreases the power cost. Consequently, it brings the considerable benefits of coal mine production and vast application prospects in other corresponding fields. Actual drilling conditions are difficult to accurately simulate in a laboratory; thus, for future work, drilling experiments can be conducted in actual underground coal mines.

Originality/value

The PIDC-based anti-SDR strategy proposed in this study satisfactorily controls the rotation motor and feed cylinder and facilitates the feed and rotation movements. Furthermore, the tangible novelty of this study results is that it improves the frequency response of the entire drilling system. The drilling process with PIDC decreased the occurrence of SDR by 50%; therefore, the anti-SDR strategy can significantly improve the safety and efficiency of underground coal mining.

Details

Robotic Intelligence and Automation, vol. 43 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 24 September 2019

Kun Wei, Yong Dai and Bingyin Ren

This paper aims to propose an identification method based on monocular vision for cylindrical parts in cluttered scene, which solves the issue that iterative closest point (ICP…

Abstract

Purpose

This paper aims to propose an identification method based on monocular vision for cylindrical parts in cluttered scene, which solves the issue that iterative closest point (ICP) algorithm fails to obtain global optimal solution, as the deviation from scene point cloud to target CAD model is huge in nature.

Design/methodology/approach

The images of the parts are captured at three locations by a camera amounted on a robotic end effector to reconstruct initial scene point cloud. Color signatures of histogram of orientations (C-SHOT) local feature descriptors are extracted from the model and scene point cloud. Random sample consensus (RANSAC) algorithm is used to perform the first initial matching of point sets. Then, the second initial matching is conducted by proposed remote closest point (RCP) algorithm to make the model get close to the scene point cloud. Levenberg Marquardt (LM)-ICP is used to complete fine registration to obtain accurate pose estimation.

Findings

The experimental results in bolt-cluttered scene demonstrate that the accuracy of pose estimation obtained by the proposed method is higher than that obtained by two other methods. The position error is less than 0.92 mm and the orientation error is less than 0.86°. The average recognition rate is 96.67 per cent and the identification time of the single bolt does not exceed 3.5 s.

Practical implications

The presented approach can be applied or integrated into automatic sorting production lines in the factories.

Originality/value

The proposed method improves the efficiency and accuracy of the identification and classification of cylindrical parts using a robotic arm.

Article
Publication date: 4 July 2023

Zicheng Zhang, Xinyue Lin, Shaonan Shan and Zhaokai Yin

This study aims to analyze government hotline text data and generating forecasts could enable the effective detection of public demands and help government departments explore…

Abstract

Purpose

This study aims to analyze government hotline text data and generating forecasts could enable the effective detection of public demands and help government departments explore, mitigate and resolve social problems.

Design/methodology/approach

In this study, social problems were determined and analyzed by using the time attributes of government hotline data. Social public events with periodicity were quantitatively analyzed via the Prophet model. The Prophet model is decided after running a comparison study with other widely applied time series models. The validation of modeling and forecast was conducted for social events such as travel and educational services, human resources and public health.

Findings

The results show that the Prophet algorithm could generate relatively the best performance. Besides, the four types of social events showed obvious trends with periodicities and holidays and have strong interpretable results.

Originality/value

The research could help government departments pay attention to time dependency and periodicity features of the hotline data and be aware of early warnings of social events following periodicity and holidays, enabling them to rationally allocate resources to handle upcoming social events and problems and better promoting the role of the big data structure of government hotline data sets in urban governance innovations.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

1 – 10 of 112